Frontal Plane–Guided Percutaneous Tendo Achilles’ Lengthening
Alfonso A. Haro, III, DPM, FACFAS,¹ and Lawrence A. DiDomenico, DPM, FACFAS²

The authors review the historical evolution of the percutaneous tendo Achilles’ lengthening (PTAL), pertinent anatomy, and advantages and disadvantages of the procedure, and present a technique for addressing gastrocsoleus equinus, using the frontal plane rearfoot valgus or varus as the guiding factors when placing incisions for triple partial transection PTAL. The PTAL is being increasingly utilized to alleviate excessive plantar foot pressures to aid in treating chronic ulcers associated with diabetic, neuropathic, and post partial foot amputations, and is often considered the surgical treatment of choice for nonspastic gastrocsoleus equinus (1).

Foot and ankle surgeons frequently lengthen the gastrocsoleus complex via a tendo Achilles’ lengthening as an adjunctive procedure to address ankle equinus secondary to congenital or acquired etiologies. Ancient civilizations used simple tenotomies and the PTAL to treat spastic equinus and talipes equino varus (1, 2). Delpech began performing the subcutaneous Achilles’ tenotomy in 1816 to aid in the correction of clubfoot and was the first to publish the procedure in 1823 (1, 3, 4). Hibbs presented the first paper using the PTAL to correct equinus associated with pes planovalgus in 1914 (1, 5). Descriptions of the tendo Achilles’

¹Fellow, Ankle and Foot Care Centers/Ohio College of Podiatric Medicine, Youngstown, OH.
²Forum Health/Western Reserve Care System, and Director, Reconstructive Rearfoot & Ankle Surgical Fellowship, Ankle and Foot Care Centers/Ohio College of Podiatric Medicine, Youngstown, OH.

Address correspondence to: Alfonso A. Haro, III, DPM, FACFAS, Foot and Ankle Center of North Carolina, 3 Regional Circle, Suite B, Pinehurst, NC 28374. E-mail: alfonsoaharoiii@aol.com.

Copyright © 2007 by the American College of Foot and Ankle Surgeons
1067-2516/07/4601-001032.00/0
doi:10.1053/j.jfas.2006.10.006

FIGURE 1 Calcaneal valgus incision planning.
lengthening procedure utilizing various percutaneous tech-
niques include: snap tenotomies; bi- and tri-partial tendon
transactions, ranging from one third to one half to two thirds
of the tendon; primary medial or lateral transactions; and
frontal or sagittal plane transactions (1, 3, 6–13). In 1947,
Hatt and Lamphier published Hoke’s PTAL describing a
triple hemisection technique, which is commonly used as
the example by which a PTAL is performed (9). In 2005,
Lee and Ko presented a paper evaluating the adequate
distance between triple hemisections and used the rearfoot
position as the determining factor when plotting the incision
sites (7).

Relevant anatomy includes the origin of the gastrocnem-
lius, soleus, and plantaris muscles; the gastrocnemius apo-
neurosis; the Achilles’ and plantaris tendons, as well as their
insertions on the calcaneus. The bipenunate gastrocnemius
muscle originates above the knee from the medial and
lateral femoral chondyles. The soleus muscle is flat and
broad and originates below the knee from the posterior tibia
and fibula. The medial head of the gastrocnemius extends
more distally than the lateral head, and it converges to yield
the anterior gastrocnemius aponeurosis fibers, which rotate
from proximal medial to distal lateral. The gastrocnemius
aponeurosis converges with the posterior aponeurosis of the
soleus muscle to form the gastrosoleus aponeurosis, which
continues distally in the same spiral rotation, forming the
Achilles’ tendon that inserts on the posterior central one
third of the calcaneus. The gastrocnemius’s contribution to
the insertion of the Achilles’ tendon is primarily superficial
lateral and, to a lesser extent, deep lateral (3, 14). The
soleus’s contribution to the insertion of the Achilles’ tendon
on the calcaneus is primarily medial, equaling approxi-
mately two thirds of the deep surface and a small portion of
the superficial surface (3, 14). Estimated measurements of
the Achilles’ tendon include: length of 15 cm, width of 20
mm, and thickness of 5 to 6 mm at the level of the ankle
joint (3, 15–18). Van Gils et al examined 16 cadavers and
reported the following results regarding the Achilles’ ten-
Figure 4: Calcaneal valgus proximal lateral incision.

don: degree of torsion ranged from 11° to 65°, with a mean of 37°; length ranged from 14.5 to 19.2 cm, with a mean of 16.8 cm; width at insertion ranged from 19 to 29.5 mm, with a mean of 24.3 mm; gastrocnemius portion of the posterior tendon at insertion ranged from 41% to 71%, with a mean of 61% of the Achilles' tendon fibers; the gastrocnemius portion of the Achilles' tendon revealed a mean angle of 8° of lateral deviation; twist of the tendon began 10.6 cm proximal to the calcaneal insertion; and torsion increased as the angle of malleolar position increased (3). Van Gils et al also noted that the Achilles' tendon torsion primarily occurs in the distal two thirds of the tendon, rotates from medial to lateral, always exists but with high degrees of variability, and is usually much less than the 90° as described by White (3, 6). The plantaris muscle originates above the knee from the lateral femoral condyle, and the tendon extends distally, coursing medial to the Achilles tendon and inserting on the medial aspect of the posterior central one third of the calcaneus. The relationship of the Achilles' tendon to the calcaneus, gastrocsoleus muscle, and paratenon as well as the location of the watershed area is important when considering the tendon's blood supply. The blood supply of the Achilles' tendon is primarily provided via the calcaneus distally, the gastrocsoleus muscle proximally, and, to a lesser extent, the paratenon. The proximal and distal blood supply yields a central location of less vascularity, referred to as the watershed area, which is noted to be 4 to 6 cm proximal to the Achilles' tendon insertion on the calcaneus. Insult to the watershed area and paratenon should be avoided or minimized during lengthening of the Achilles' tendon. The course of the plantaris tendon, sural nerve, and saphenous vein is of importance to avoid iatrogenic injury and to ensure complete release of the plantaris tendon.
Surgical Technique

The patient is placed supine on the operative table and anesthesia is provided. The thigh tourniquet is applied but not inflated, and the foot and leg are prepped and draped above the knee. The foot is placed in a neutral subtalar joint position, the rearfoot to leg relationship is evaluated, and the calcaneus position is verified as being neutral, valgus, or varus. The foot is then supinated, maximally dorsiflexed, and elevated by the assistant, providing the surgeon direct visualization to the posterior leg and skin overlying the taut Achilles' tendon (Fig 1). The central one third of the posterior aspect of the calcaneus is identified as the insertion site of the Achilles' tendon, and 3 incision sites are mapped out from distal to proximal. If the calcaneus is in a neutral or valgus position, the incisions are planned in the following manner: the first is approximately 3 cm proximal to the insertion site and lateral, the second is approximately 6 cm proximal and medial, and the third is approximately 11 cm proximal and lateral. The specific location and distance between each partial transection minimize trauma to the paratenon and watershed area while allowing up to 3 cm of tendon sliding. Using the thumb and index finger of the nondominant hand, the surgeon palpates the medial and lateral margins of the Achilles' tendon. A skin marker is used to make 3 longitudinal marks on the skin approximately 5 mm in length directly over the palpable Achilles' tendon. The distal lateral mark is placed so that it delineates the lateral one third from the medial two thirds of the Achilles' tendon. The central medial mark is placed so that it delineates the medial one third from the lateral two thirds of the Achilles' tendon. The proximal lateral mark is placed so that it delineates the lateral one third from the medial two thirds of the Achilles' tendon. A 15 blade is used to create a longitudinal stab incision through the skin and distal lateral one third of the Achilles' tendon. The blade is inserted perpendicular to the skin, cutting edge cephalic, and longitudinal to the Achilles' tendon (Fig 2). Once the blade is advanced (15 blade, approximately 15 mm) through the tendon, it is rotated 90° so that the cutting edge is orientated lateral and perpendicular to the longitudinal course of the Achilles' tendon. The scalpel handle and surgeon's hand are then slowly advanced anterior and medially so that the cutting edge of the blade advances laterally, transversely, and posteriorly, transecting the lateral one third of the Achilles' tendon. As the blade transects the tendon, the surgeon should appreciate a sensation of cutting through celery and stop the advancement of the cutting edge.
of the blade once it exits the tendon shy of the surrounding deep tissue, sural nerve, and overlying skin. The scalpel and surgeon’s hand are returned to the initial starting position and the blade is removed from the skin, oriented exactly as it was inserted, leaving only the original longitudinal incision in the skin and paratenon. Attention is then directed to the previously identified central medial one third of the Achilles’ tendon (Fig 3). The medial one third of the Achilles’ tendon is transversely transected using the same technique, with exception of the scalpel handle and surgeon’s hand being slowly advanced anterior and laterally so that the cutting edge of the blade advances medially, transversally, and posteriorly, transecting the medial one third of the Achilles’ tendon. The scalpel and surgeon’s hand are then returned to the initial starting position and the blade is removed from the skin, oriented exactly as it was inserted. Attention is then directed to the previously marked proximal lateral one third of the Achilles’ tendon, where the same technique is reproduced as described for the distal lateral one third of the Achilles’ tendon transection (Fig 4).

If initial evaluation confirms rearfoot varus, then the previously described steps are performed with the exception of the placement of the incisions (Fig 5). In the presence of rearfoot varus, the distal incision is placed medial, facilitating transection of the medial one third of the tendon (Fig 6); the central incision is placed lateral, facilitating transection of the lateral one third of the tendon (Fig 7); and the proximal incision is placed medial, facilitating transection of the medial one third of the tendon (Fig 8). Despite the starting location, all 3 partial transections of the Achilles’ tendon are through the lateral or medial one third of the tendon, therefore avoiding violation of the central one third of the tendon (Figs 9–11). If residual equinus exists, the same incision sites may be used to reintroduce the blade and transect additional tendon fibers. Up to one half of the tendon may require transecting at each location; however, the greater the amount of fibers transected, the greater the risk of an iatrogenic Achilles’ tendon rupture.

The assistant and surgeon should appreciate a noticeable release of the Achilles’ tendon and an increase in the available ankle dorsiflexion on completion of the 3-incision PTAL procedure. One should attempt to obtain a minimum of 90° of ankle dorsiflexion up to 10° to 15° past 90°, with the foot in a neutral subtalar joint position, midtarsal joint adducted, and the knee fully extended. The incisions are irrigated with normal saline solution, reapproximated, and coapted with 4-0 nonabsorbable simple sutures (Fig 12).
The incisions are covered with a non-adherent dressing, 4 × 4 gauze, and six inch gauze wrap; meanwhile, the foot is held in a neutral position and dorsiflexed so that 90° of ankle dorsiflexion is maintained while web roll and a below-the-knee posterior L and U splint is applied and covered with ace wraps. The patient remains nonweightbearing in a splint or cast for 3 to 4 weeks and is then transitioned to partial weightbearing in a protective cam boot for an additional 4 to 6 weeks. At 8 to 10 weeks postoperatively, the patient is transitioned to a walking or running shoe. Progressive increased weight-bearing activity is allowed as tolerated without pain, and a gradual step-up program with physical therapy is initiated.

Discussion

Advantages of the frontal plane–guided PTAL technique include: 1) release of the greatest amount of fibers of the Achilles' tendon is associated with the greatest amount of rearfoot frontal plane deformity (distal lateral to central medial to proximal lateral for calcaneal valgus and distal medial to central lateral to proximal medial for calcaneal varus); 2) transections of the Achilles' tendon are performed
at the periphery of the watershed area; 3) they may allow up to 3 cm of Achilles' tendon slide; 4) they minimize violation of the central one third of the tendon; 5) the distal lateral to central medial to proximal lateral release is consistent with the proximal medial to distal lateral angle of insertion of the gastrocnemius fibers of the Achilles' tendon; 6) they avoid the posterior medial neurovascular bundle; and 7) they allow greatest latitude for increasing the distance between the 3 stab incisions because the lateral head of the gastrocnemius muscle ends more proximally than the medial head. Additional advantages as presented by Lee and Ko include: short operative time, negligible scarring, immediate weight-bearing after surgery, short immobilization time, and little or no chance of developing calcaneal deformity (7). Advantages of the Hoke triple hemisection PTAL reported by Nishimoto et al include: it is a rapid procedure that may be performed under local anesthesia, and it has a low recurrence rate and minimal wound complications (19).

Disadvantages of the PTAL include: Achilles' tendon rupture due to 13% incidence of unintentional complete tenotomy (20); intraoperative (over sliding) during forced dorsiflexion; insufficient postoperative immobilization; lack of protected weightbearing or secondary to spastic gastrocnemius muscle contraction; imprecise lengthening such as overcorrection (over sliding); resulting in weakness of the triceps surae muscle complex; a 2% to 10% incidence of calcaneal gait (19); plantar heel ulceration; decreased stride length and velocity; decreased push-off strength; knee and ankle instability; and crouched gait in children with spastic conditions; or undercorrection, resulting in continued equinus and recurrence of equinus in spastic cases and in the presence of weak dorsiflexors; sural neuritis, nerve entrapment or neuroma; infection; adhesions; and prolonged postoperative casting, resulting in disuse atrophy or cast disease (1, 7, 19–30).

To date, the lead author has performed 52 frontal plane-guided PTAL procedures over a 6-year period with no reported incidents of calcaneal gait or complete Achilles' tendon rupture. One case of transient sural neuritis was encountered, which is similar to results reported by Piriou et al who cited 1 case of pericchalecal neuropathy as the only complication after 80 PTALs (31, 32).

References